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A mathematical model of heat transfer in steel parts in force grinding is considered. The model allows one 

to determine parameters of grinding at which the layer of steel of the given thickness is heated to the 

temperatures of quenching. The main laws governing the changes in the temperature of the part being ground 

are presented. The situation of the appearance of cleavages and melting of the edge of a wedge-like body in 
grinding and sharpening is analyzed. 

Intense heat release in grinding greatly influences the quality of the forming surfaces of parts. Here, of 

special importance is not only the value of the contact temperature but also the spatial-temporal temperature field. 

Use of energy feasibilities of grinding for simultaneous strengthening of the treated surface is very urgent and in 

some cases it allows one to exclude operations of heat treatment with the required geometric accuracy being 
provided. However, wide adoption of the method of strengthening grinding (SG) [1, 2 ]'is restrained by insufficient 

studies of intense thermal fields, which are formed under the action of the modes of treatment and exert a consid- 

erable effect on the degree and depth of the strengthened zone. A majority of the known mathematical models of 

grinding presuppose calculation of contact temperatures [3, 4 ]. Some authors present relations which allow the 
determination of the character of the distribution of these temperatures over the depth of the part being ground 

[5, 6 ]. At the same time, the relations mentioned have a very approximate character and do not suit for calculation 

of the parameters of the process of strengthening grinding. Moreover, they do not explain the appearance of 

cleavages and melts of the edge of the part being ground. By virtue of this fact we suggest calculating the parameters 

of the process of grinding by a more accurate mathematical model based on a direct solution of the nonstationary 
equation of heat conduction. 

Mathematical Model for Determining Temperature Parameters of the SG Process. The mathematical model 

for determining temperature fields in the material subject to the action of an abrasive disk is based on solution of 

the well-known equation of heat conduction which with the assumption of heat supply only from the surface of the 

material has the form [7 ] 

cp (T) p (T) aT (r, r) aT + V ( -  ~ (T) VT (r, r)) = O. (I) 

The boundary conditions to Eq. (1) which allow for convective and radiative mechanisms of heat transfer 

from the surface of the body and heat supply due to forces of cutting and friction on the surface of the material 

can be written in the form 

- -  )t ( T )  OT (r, ~) [ = a (T) (T (r, z) - Tin) + ea (T 4 (r, r) - T4m) + qgr (r, r ) .  
On I rEB 

(2) 

At the initial instant of time the temperature of the part is taken to be uniform 
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T (r, r) I~=0 = To- (3) 

The  tempera ture  of the part T(r, ~) is found from solution of the equation of heat  conduction (1) with 

boundary (2) and  initial conditions (3). The mentioned system is solved by the method of finite elements [8, 9 ]. 
In accordance with this method spatial digitization of the calculation region is made, as a result of which a number  
of elements of splitting (Ne) and nodes (Nn), where the temperature is calculated, are obtained.  For each i-th node 

(1 _< i ___ Am) we introduce the basis functions ~Pi(r) so  that ~Pi(ri)  = 1 and g,i(rj) = 0, Vj. ~: i, where 1 ___ j < Am, i.e., 
the function ~Pi is a "hyperpyramid" constructed above the i-th node.  Then, the temperature  T(r, r) is expressed 
by the basis functions as 

g n 

T (r, r) = ~ Tj ( 0  Wj ( r ) .  (4) 
j=l 

To determine the temperature at the nodal points of the calculation region Tj we used the Bubnov-Ga le rk in  method 
[10], in accordance with which for each 1 <__ i --- N n from Eq. (1) we have 

OT (r, r) ) 
f f f cp (T) p (T) Or + V ( -  ,~ (T) VT (r, r)) r (r) dW = O, 

W 

g e 

where W = U A e 
e = l  

is the calculation region; Ae is the e-th element of splitting. 

With account  for (4) expression (5) is reduced to the sys tem of linear equations 

N n 

+5: 
j=l 

,v. o7)(0 Ne 
~, Or ~, f f f (Cp (T) p (T) ~i (r) ~pj (r)) dW + 

j =  1 e--- 1 &e 

N e 

(s) 

Tj (r) e=l ~ ( f  fe f ;t (T) V~Pi (r) V~pj (r) d w  + f A e~pi (r)Wj ( r ) f f  (T) dS) = 

N e 

= ~ f f w i  (r) ~'(T) dS (1 _< i -< Nn),  (6) 
e = l  5 A  e 

where 5Ae is the  edge of the e-th element pertaining to the bounda ry  of the body S, and the quantities if(T) and 
~'(T) with account  for boundary conditions (2) are determined as 

2 T 3 ) &" (T, r) = a (T, r) + eo (T (r) 3 + T (r) 2 T m + T (r) T m + , 

q (T ,  r, l-) = if, (T, r, r) T m + qgr (r, z) .  (7) 

For further considerat ion it is convenient to write the system of equations (6) in the matrix form 

M C (0  + (0  T (O = Y ( 0 ,  (8) 

where T (O  and  Y(O are the vectors of the quantities on the right side of system (6) and the temperature  at the 

nodes of the computational  grid. Equation (8) is solved by the Crank -Nico l son  [ 10 ] difference scheme 

1~1 c (r) T (Tk+l)Ar- T (k )  + 21 ~ (r) (T (r k+l)  + T (k ) )  = Of (v) ,  (9) 
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Fig. 1. Schematic of calculation of the length of contact between the disk and  

the part in grinding of a flat surface. 

where Ar is the time step; the superscript ' '^ "indicates a mean value of some quantity during the time interval [r k, 

rk+l ]. With account for (9) we can write the expression for determining T(~ -/~+1) 

T 0 "k+l) = (Me) -I IMp. d T (z "k) + Yp.d], (i0) 
/x 

_- _ ^ .-- M C ^ where Mr 1~I C (Ar/2)M2; Mp.d + (Ar/2)M2; Yp.d = ArY. 

With account for the fact that  the obtained matrices Mr and Mp.d are band or positive definite, it is 

convenient to inverse the matrix M~ in (10) by the Kholesskii method, which requires less computer  resources for 
storage and solution of matrices. 

With account for that said above, the algorithm of calculation of temperature fields T(r, z) can be presented 

as: 
1) we set an initial temperature of the part T 0, ~ = 0; 

2) we determine the following instant  of time z k+l = z k + Az; 

3) we determine the surface densi ty of the heat source caused by the forces of cutt ing and  friction qgr(r, 

r) at the boundary  nodes of the computational grid and the coefficients if(T) and ~'(T); 

4) in accordance with the above-described method of the solution of the equation of heat  conduction (1) 

and according to (6) we fill the matrices M~ and Mp.d and the vector of the right side Y. Then ,  according to (10) 

wc calculate lhe values of the temperature at the nodes of the computational grid Ti(~k+l); 
5) if the time of calculation is less than that assigned, we repeat calculation from item 2. 

The described algorithm allows one to calculate a temperature field in the part subject to grinding at the 

known value of the heat  source - the surface density of the heat source qgr(r, T) caused by forces of cutting and 

fricllon. 
To find the density of the heat  flux, we consider the schemes of motion of the abrasive disk along the 

.~urtacc of the part  (Fig. 1). 
An addit ional  heat flux qgr(r, r) appears only at the place of contact between the abrasive disk and the 

parl (arc AB) and  it can be expressed by the relation 

[Feat Odisk t] (11) 
qgr(r) = L L B  qdisk-- qme a ( r , L , B ) ,  

where 

= {1 ,  r ~  [contact zone] ,  
, r ~ [contact zone] .  

As is shown in [6], qdisk does not exceed several percent of the heat released due to the forces of cutting and 

friction, i.e., we can assume qdisk = 0. The heat flux escaping with the taken-off metal is 
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Fig. 2. Change of temperature at control points of the surface of the specimen 

in grinding. 

CpM (T - TO) 
qmel = LB (12) 

where M--PA01ongB is the expenditure of taken-off metal per second, kg/sec.  
At present, the force of cutting Fcu t is determined basically from experiment.  It is written in the form of 

empirical relations of the type [6 ] 

AAaS b d (13) 
Fcu t = lglong l~disk , 

where A, a, b, c, d are empirically selected coefficients; S is the area of the zone of contact between the disk and  

the part. The experiments show that within the range of velocities of the disk periphery 15-35 m/sec  the force of 

cutting decreases with an increase in the velocity and d -~ -0 .33  [6 ]. Then,  it follows from physical considerat ions 
that the force of cutting is in direct proportion to the width of the disk covering (B) because with an increase in 

the width more and more new grains become operative. This cannot be said about the effect of the length of the 

contact zone (L), because, in spite of the increase in the number  of working grains,  a situation is possible where  
grains get into the grooves already cut by previous grains. However, in the first approximation we can assume that  

Fcu t - L ,  and the coefficient A includes a correction for the length of the contact zone. With account for tha t  said 

above, we have 

�9 . a - c  . - 0 . 3 3  ( 1 4 )  
Fcu t = AA Olong 1/disk LB.  

We consider the length of the contact between the disk and the metal in surface grinding (Fig. 1): 

L = lAB I = Rdiskarccos (1 Rdis kA ) ~ X/2RdiskA. (15) 

Then Fcu t - A  a+~ and Fcu t -lgfong. In [6 ] an empirical relation is given according to which the force of cutt ing 

00"31 . Thus, a = 0.12 and c = 0.31. With account for that  said above, for the surface dens i ty  Fcu t - A 062 and Fcu t ~ long 

of the heat  flux in grinding we can suggest the following formula: 

[ 0.12-0.31-0.67 PA1)longCp _ ] 
6 (16) qgr (r) = [AA 0long 0disk -- (T TO) (r, L, B) L 

As is shown by our experiments A ~ 1.40- 107. 

Results of Numerical Simulation of the Thermal  Mode of the Plate and the Wedge-Like Body in Surface-  

Strengthening Grinding. In grinding a flat part (with a section of 200 x 10 mm) the temperature of the surface at 

the initial instant of time is lower due to heat removal from the depth and streamwise, and on approaching the 
edge of the plate the temperature increases - the end effect of the termination of grinding becomes manifest .  The  
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Fig. 3. Temperature of the surface as a function of the coordinate of the 

treated boundary in grinding at a constant frequency of disk rotation. 

Fig. 4. Maximum temperature on the surface in grinding (1) and on cooling 
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Fig. 5. Distribution of temperature on the surface of the wedge on termination 

of grinding. 

control points 2, 3 in Fig. 2 are fixed with an interval of l0 mm from the point 1 at which the process of grinding 

is initiated, point 4 at the center of the part, and points 5, 6 with the same interval from point 7 at the boundary 

of the specimen, the end effect of the start of grinding disappears even at 20 mm from the start of grinding (point 

3), the temperature of the central part of the plate remains constant (point 6 at 10 mm from the end of the 

specimen), and then the effect of the termination of grinding appears, which is characterized by a sharp increase 

in temperature. 

At the given parameters of grinding the temperature at a depth of 1 mm reaches that of quenching (and 

with controlled cooling we can obtain the required hardness), but on reaching 2 mm from the surface (point 8) it 

decreases to about 800~ 

That said above allows us to draw the conclusion that in order to obtain a uniform temperature of the 

surface in strengthening grinding of flat parts it is necessary, in our opinion, to control the velocity of rotation of 

the disk - to increase it at the start of grinding, to maintain it constant in the middle, and to decrease on 

approaching the second edge. 

This is most vividly characterized by the graph of the variation of the maximum temperature depending 

on the length of the section of a flat specimen (curve 1 in Fig. 3). The change in the temperature along the length 

of the specimen on termination of grinding is shown by curve 2, 

Of special interest is the graph of the temperature of the surface in grinding of a wedge-like specimen. A 

distinctive feature is the sharp increase in the temperature at the end of the process by about 4-5 times compared 

to flat bodies, thus leading to bending and sometimes to melting of the sharp edge of the wedge (Fig. 4, curve 1). 

The graph of the variation of the temperature on termination of the process of grinding is given in Fig. 4 

(curve 2). The center of the wedge-like portion is the most heated; then the temperature decreases due to intense 

cooling of the developed surface of the wedge edge. 
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The result obtained when the abrasive disk approaches the sharp edge of the wedge (Fig. 5) is of interest. 
Due to the small thickness of the specimen the temperature on the edge begins to increase quickly and reaches a 

maximum much earlier than in the thick portion of the wedge due to removal of heat to the depth of the metal. 

With subsequent movement of the disk the deflection flattens, but the temperature of the edge of the wedge will 

exceed the admissible and, as a consequence, the edge of the wedge will melt. 

Thus,  we can draw the conclusion that in grinding a wedge-like part it is necessary to control the parameters 

that reduce the supply of heat to the body of the product. The most probable and effective parameter of this control 

can be the velocity of rotation of the disk or the velocity of disk delivery to the part. 

N O T A T I O N  

T(r, z), the temperature of the body at the point with radius-vector r at the instant of time r, ~ cp, p, 2, 

heat capacity, density, and coefficient of thermal conductivity of the material, respectively; n, outer normal to the 
boundary; e, emissivity of the surface; a = 5.67.10 -8 W/(m2.K4), Stefan-Boltzman constant; a,  coefficient of 

heat transfer in the system "part surface-surrounding medium", W/(m2.~ Tm, temperature of the cooling 

medium; qgr(r, z), density of the heat flux caused by the forces of cutting and friction on the surface of the material 

in grinding; A, depth of grinding (taken-off allowance), m; 0long, velocity of longitudinal delivery of the part, m/sec;  

Rdisk , radius of the abrasive disk, m ;  • , velocity of motion of the periphery of the disk (0disk = 2~Rdiskn , where 
n is the frequency of rotation of the disk), m/see; Fcu t, force of cutting, N; L, length of contact of the disk and the 

part, m; B, width of the cutting edge of the disk, m; qdisk, heat flux escaping to the abrasive disk; qmet, heat flux 
escaping with the taken-off metal; P, coordinate of the treated boundary of the body, starting from the left, m. 
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